DOC HOME SITE MAP MAN PAGES GNU INFO SEARCH PRINT BOOK
 

Transactional Cursors and Concurrent Applications

When you use transactional cursors with a concurrent application, remember that in the event of a deadlock you must make sure that you close your cursor before you abort and retry your transaction.

Also, remember that when you are using the default isolation level, every time your cursor reads a record it locks that record until the encompassing transaction is resolved. This means that walking your database with a transactional cursor increases the chance of lock contention.

For this reason, if you must routinely walk your database with a transactional cursor, consider using a reduced isolation level such as read committed.

Using Cursors with Uncommitted Data

As described in Reading Uncommitted Data above, it is possible to relax your transaction's isolation level such that it can read data modified but not yet committed by another transaction. You can configure this when you create your transaction handle, and when you do so then all cursors opened inside that transaction will automatically use uncommitted reads.

You can also do this when you create a cursor handle from within a serializable transaction. When you do this, only those cursors configured for uncommitted reads uses uncommitted reads.

Either way, you must first configure your database handle to support uncommitted reads before you can configure your transactions or your cursors to use them.

The following example shows how to configure an individual cursor handle to read uncommitted data from within a serializable (full isolation) transaction. For an example of configuring a transaction to perform uncommitted reads in general, see Reading Uncommitted Data.

package db.txn;

import com.sleepycat.db.Cursor;
import com.sleepycat.db.CursorConfig;
import com.sleepycat.db.Database;
import com.sleepycat.db.DatabaseConfig;
import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;

import java.io.File;

...

Database myDatabase = null;
Environment myEnv = null;
try {

    EnvironmentConfig myEnvConfig = new EnvironmentConfig();
    myEnvConfig.setTransactional(true);
    myEnvConfig.setInitializeCache(true);
    myEnvConfig.setInitializeLocking(true);
    myEnvConfig.setInitializeLogging(true);

    myEnv = new Environment(new File("/my/env/home"),
                              myEnvConfig);

    // Open the database.
    DatabaseConfig dbConfig = new DatabaseConfig();
    dbConfig.setTransactional(true);
    dbConfig.setType(DatabaseType.BTREE);
    dbConfig.setReadUncommitted(true);      // Enable uncommitted reads.
    myDatabase = myEnv.openDatabase(null,              // txn handle
                                    "sampleDatabase",  // db file name
                                    null,              // db name
                                    dbConfig);

    Transaction txn = null;
    // Open the transaction. Note that this is a degree 3
    // transaction.
    txn = myEnv.beginTransaction(null, null);
    Cursor cursor = null;
    try {
        // Use the transaction handle here
        // Get our cursor. Note that we pass the transaction 
        // handle here. Note also that we cause the cursor 
        // to perform uncommitted reads.
        CursorConfig cconfig = new CursorConfig();
        cconfig.setReadUncommitted(true);
        cursor = db.openCursor(txn, cconfig);

        // From here, you perform your cursor reads and writes 
        // as normal, committing and aborting the transactions as 
        // is necessary, and testing for deadlock exceptions as 
        // normal (omitted for brevity). 
        
        ...